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We consider effects of a periodic modulation of the nonlinearity coefficient on fundamental and higher-order
solitons in the one-dimensional NLS equation, which is an issue of direct interest to Bose-Einstein condensates
in the context of the Feshbach-resonance control, and fiber-optic telecommunications as concerns periodic
compensation of the nonlinearity. We find from simulations, and explain by means of a straightforward analy-
sis, that the response of a fundamental soliton to the weak perturbation is resonant, if the modulation frequency
w is close to the intrinsic frequency of the soliton. For higher-ordsolitons withn=2 and 3, the response to
an extremely weak perturbation is also resonang i close to the corresponding intrinsic frequency. More
importantly, a slightly stronger drive splits the 2- or 3-soliton, respectively, into a set of two or three moving
fundamental solitons. The dependence of the threshold perturbation amplitude, necessary for the spliting, on
has a resonant character too. Amplitudes and velocities of the emerging fundamental solitons are accurately
predicted, using exact and approximate conservation laws of the perturbed NLS equation.
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l. INTRODUCTION mented by dint of elements with a strong quadrdit?)
The nonlinear SchrodinggNLS) equation is a universal r_10n|inearity, which are periodically inserted _into the fiber
model of weakly nonlinear dispersive medig2]. The exis- link. The x? elements can emulate a negative Kerr effect

tence and stability of solitons in the one-dimensio(iD)  through the cascading mechanigdp. Various other schemes
version of the NLS equation with constant coefficients is aof NLM in fiber-optic links were considered, including its
well-established fact, which has important implications incombination with the DM, amplifiers, et¢10]. A related
various areas of physics. In particular, solitons in fiber-opticscheme makes use of the NLM in soliton-generating lasers
telecommunicationg3] and quasi-1D Bose-Einstein conden- hased on fiber ringg11]. The NLM for spatial solitons,
sates(BEC9 with attractive interactions between atofd§,  \ hich assumes alternation of self-focusing and self-

have drawn a great deal (_)f interest. . defocusing nonlinear layers in plan@t2] or bulk [13]
A new class of dynamical problems, which also have awaveguides was introduced too

vast potential for physical applications, emerges in the inves- :
o . oo ’ : All these systems may be regarded as examples of peri-
tigation of soliton dynamics in extended versions of the NLS y y g P P

. . . . - . odically inhomogeneous optical waveguiding media. Other

equation, in which coefficients are periodic functions of the ;
evolutional variable. A well-known example is a nonlinear examplgs belonging to the same general clagstaindem
fiber-optic link subjected talispersion managemebM), Wayegwdes(see Ref.[14] and refer_ences therelranq .the
which implies that the dispersion coefficient periodically al- SPlit-step mode[15]. These are built as a juxtaposition of
ternates between positive and negative values. The DM linkinear segments alternating with ones featuring, respectively,
support a family of stable temporal solitoteee, e.g., Refs. quadratic or cubic nonlln.earlty. A common featurg of the
[5], and also Ref[6]). Somewhat similar is avaveguide- models of all these types is that they suppoliustsolitons,
antiwaveguidesystem, which can be realized in the spatialdespite a “naive” expectation that solitons would quickly de-
domain(planar optical waveguidgsin the latter case, a light cay, periodically hitting interfaces between strongly different
beam is transmitted through a periodic concatenation of norelements of which the system is composed.
linear waveguiding and antiwaveguiding segmefité A The above-mentioned optical media are described by the
common feature of the latter system with the DM is that theNLS equation, in which the role of the evolutional variable
coefficient which periodically jumps between positive andbelongs to the propagation distance, while the remaining free
negative values also belongs to the linear part of the equasariable is either the local timgor temporal solitong or the
tion. transverse coording®, in the spatial-domain models.

Another technique that may be useful for optical telecom-Mathematically similar, but physically altogether different,
munications is nonlinearity managementNLM), which  models describe BECs in the 1D geometry. In that case, the
assumes that the coefficient in front of the nonlinear terntorresponding NLS equation is usually called the Gross-
periodically changes its sign. An advantage offered by thePitaevskii (GP) equation. It governs the evolution of the
NLM is a possibility to compensate the nonlinear phase shifmean-field wave functiog in time (t), the other variablex,
accumulating in pulses due to the Kerr nonlinearity of thebeing the coordinate along the quasi-1D trap. In the normal-
optical fiber[8]. In practical terms, the NLM can be imple- ized form, the GP equation is
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i =— %¢XX+ U(x) ¢+ g|d|20, (1) much more important role, in view of the intrinsic instability
of the multidimensional NLS solitons.
Thus, we will be dealing with the normalized NLS equa-
where U(x) is the potential which confines the condensatetion in the form[cf. Eq. (1)]
and the nonlinearity coefficien is proportional to the scat- ) 1 ) o
tering length of collisions between atoms. Two natural pos- i+ 3ot [L+Dsin(w)] [¢°¢ =0, (2)

sibilities to introduce a time-periodi@c) “management” in  here the amplitude of the ac drive is small. Note that Eq.

the confining potential, most typically in the form of \yhich is proportional to the number of atoms in the BEC,

U(x,t):%[xo+ k,c09 wt)]x?, or by means of time modulation .

of the scattering length, using the Feshbach resonéfiRe N:f | p()[2dlx 3)

[16]. In the latter case, the nonlinearity coefficient in ED. " ’

takes the form ofg(t)=gy+g;sin(wt). In either case, the

modulation is generated by a combination of dc and ac magand the momentum,

netic fields applied to the BEC. +o0
The GP equation with the periodically modulated strength P= ij (P, — ¢ Ppdx. (4)

of the trapping potential was considered for bgth 0 (when -

solitons do not exist, and the BEC as a whole is subjected to

the "management,” including the 2D and 3D c39ds], and (2) can generate strong effects, if the driving frequencis

g;t?(’:lﬁlgregthzrzc;::tec;ﬂésr;g%::s:;ﬂgnaggzllg?i‘gﬁé I]':]Ormecrlose to specific resonant values. These effects include intrin-
P » apar . pOs . . Sic vibrations of the fundamental soliton and splitting of the
case, and creation of an effectively trapping potential, whil

the underlying one is antitrapping, having<0, by the ehlgher—order ones. We will also propose analytical explana-

. o tions to these effects. To the best of our knowledge, these
high-frequency ac part of the potenti@glith large w) was .
. . results have not been reported before for the present simple
predicted in the latter case.

The periodic modulation of the nonlinearity coefficient model. . . . .

through the “ac FR management” is an especially interestin The rest of the paper is organized in the following way.

e ; . > € . %he resonant effect of the periodic NLM on the fundamental
possibility, as the FR is a highly efficient experimental tool, liton is reported in Sec. Il and the resonant splitting of
broadly used for the study of various dynamical properties of oMo iy _ Co : . piting

) . . n-solitons withn=2 and 3 is investigated in Sec. lll. Sec IV

the BECs[16]. In particular, it has been predicted that the concludes the paper
modulation through the ac FR makes it possible to preclude '
collapse and generate stable solitonlike structures igli2D
not 3D) condensatefl9]; in fact, this prediction is similar to Il. RESONANT RESPONSE OF THE FUNDAMENTAL
the earlier considered possibility of the stabilization of 2D SOLITON
spatial optical solitons in a bulk waveguide subjected to the
periodic NLM [13]. In the 1D model of the GP type, sub- ] ] ] o
jected to the NLM, various stable dynamical states, including _ First, we consider the action of the ac perturbation in Eq.
Gaussian-shaped soliton-like objects, and ones of th€2) on the fundamental soliton, which, in the cdse0, is
Thomas-Fermi type, were studied in def@0]. In addition, — _ A2
analysis based on averaged equations was developed, for this Psol%,D) = A SECHAKX = Xo)] eXRIAT2), ®
case, in Ref[21] (similar to the analysis elaborated in Ref. whereA is an arbitrary amplitude. Numerical simulations of
[18] for the case of the periodic modulation of the trappingEq. (2) were performed in a sufficiently large domain, 0O
potentia). <x<L, the initial condition corresponding to the solit¢)

The objective of this work is to studsesonance effects placed at the center of the domaig=L/2. We have per-
produced by the ac FR management, i.e., harmonic moduldermed numerical simulations using the split-step Fourier
tion of the nonlinearity coefficient, in the dynamics of fun- method with 1024 Fourier modes. The system size3$0,
damental and higher-order 1D solitons in the NLS equationand the time step for the numerical simulatiomis=0.001.

We will focus on the case when the ac part of the nonlinear Figure Xa) displays a typical example of the time evolu-
coefficient is small in comparison with its constadt) part  tion of the soliton’s amplitudés(x=L/2)|, under the action
0o, Which accounts for the self-attraction in the BEC, and isof the ac perturbation with a very small amplitude,
normalized to begy=—1. We also assume that the soliton’s =0.0001. The frequency of the beatings observed in this fig-
width is much smaller than the effective size of the trap,ure can be clearly identified as— ws,, Wherewg,=A?/2 is
hence the external potential may be dropped. The considethe intrinsic frequency of the unperturbed solit@). We
ation of the GP equation without the trapping potentialhave checked that the beating frequency is independent of
makes it possible to identify fundamental dynamical effectdhe system’s size and the other details of the numerical
for the solitons induced by the ac FR management. In thischeme.

connection, it is necessary to mention that, in the 1D case, The main resonant effect for the fundamental soliton is
the trapping potential is not a crucial factor, on the contrarydisplayed in Fig. (b), in the form of the difference between
to the 2D and 3D cases, where the external potential plays e maximum and minimurgn time) values of its amplitude

We will demonstrate that the weak ac perturbation in Eq.

A. Numerical results
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FIG. 1. (a) A typical example of beatings in the evolution of the fundamental-soliton’s amplitude under the action of a very weak
perturbation in Eq(2), with b=10"% and w=2.2. The amplitude of the initial unperturbed solitonAs2 (the corresponding soliton’s
frequency iswg=A?/2=2). (b) The difference between the maximum and minimum values of the soliton’s amplitude vs the perturbation
frequency. The dashed line is a fitting curve, 0.0ae32|2/2

versus the driving frequencyw. The resonance ab=wg,  the source corresponding to the second term on the right-
=2 (for A=2) is obvious. The simulations do not reveal any hand side is approximated by&function:
noticeable subharmonic or higher-order resonance at fre-
uenciesw=1, 3 or 4. Due to the scaling invariance of Eq. (> 1( _ “iAowt
?2), the plot shown in Fig. (b) does not pertain solely to thg I(d)pe”)t " 2(¢pe")xx_ cons Sx)e,
particular value of the soliton’s amplitudd=2, but is actu-
ally a universal one. It is easy to verify that the ranges of the i
variablest andx, which are shown in this and other figures, const =ZbA2, (7)
correspond, in the normalized units, to experimentally real-

istic configurations of the BECs in the quasi-1D geometry.
g g 9 y where Aw=w-ws,, and conse (ib/2)A3[*“secR(AX)dx.
Equation(7) can be solved by means of the Fourier trans-

form. After straightforward manipulations, this yields
In order to explain the resonance shown above, we look

B. Perturbative analysis

for a perturbed fundgmental §o|uti0n di{.x,t):¢>so|(x,t) _ const . .. t gt ix2
+ ¢per(X, 1), where the first term is the solutigh). Thus, we Dperd X;t) = = 2#(1 +i)e '8 NG exp o +idwt' .
N oV

arrive at the driven linearized equation for the perturbation,

o 8)
i(d’pert)t + %(d’pert)xx"' AzseCH(AX)(2¢pert+ eIAth’pert) (
i T2 oo Further consideration shows that, i <0, the asymptotic
= EbA3secﬁ(Ax)[e'[(A 2)rolt_ glW2-o)] (6)  form of the solution8) att— o amounts to an exponentially
localized stationary expression, which, by itself, is an exact
The source of the resonant response is in the fact that theolution to Eq.(7):
second term on the right-hand side of E6). becomes time-
independent exactly at the resonance poist,ws,=A?/2. t
Figure 2 displays the evolution of the perturbation close to 120

the resonance ab=1.98, as found from direct numerical \’___/k\’_
integration of the linearized equati®®), with the initial con- 100" A~ ]

dition ¢peX)=0. As can be seen from the figure, the pertur- god——— W
bation grows in time at the center, and simultaneously ex- . e~
pands in space. Strictly speaking, the latter feature remains 60-\1—"‘/“'\—-\——-.,..

valid as long as the size of the region occupied by the ex- 20 AN

panding wave fields remains essentially smaller than the

limit imposed by the confining field. oW
The linearized equatiol6) is too difficult for an exact

analytical solution. However, the observation that the char- 0 T T T T

acteristic spatial scale of the solution observed in Fig. 2 be- o 10 20 3 40 50

) ) X
comes much larger than the internal scale of the function

secttAx) suggests that principal features of the solution can  FIG. 2. Direct numerical solution of the linearized equatién
be understood from a simpler equation, in which the ternfor the perturbation around the fundamental soliton, in the near-
~sechR(Ax) on the left-hand side of Eq6) is neglected, and resonance case, with=1.98.
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~ const ) — periodically oscillating breathers, which start from the initial
DperdXt) = m explilAwlt-V2[AwlX]). (9  conditions

In the case ofAw>0, the asymptotic form of the general $o(x) = NAsechiA(x-L/2)] 1D
solution (8) corresponds to a symmetric region occupied bywith an integem> 1 [23] [the expressioiill) assumes that
plane waves emitted by the central source at wave numbeghe initial configuration is placed at the center of the integra-
k=+y2Aw . The region expands in time with the group tion domai. The frequency of the shape oscillations
veIocitieSz;gr:k:i\s“m, so that the asymptotic form of the (breathing$ of the higher-order soliton is

solution is

wpr = 4A2, (12)
:ﬁpen(x,t) ~ - '(’,‘O—E[ irrespective of the value af.
V2Aw Generally speaking, the higher-order solitons are unstable

exp(— iAwt+i\J’m|x|), if |x| < 2hat, bound complexes of fundamental solitons, as, in the absence
% p— of perturbations, their binding energy is exactly zero, which
0, if X > vV2Awt. is a known consequence of the exact integrability of the un-
(10) perturbed NLS equation. Nevertheless, not any perturbation
readily splits the higher-order soliton into its fundamental
This asymptotic solution implies that the nor(8) of the  constituents; usually, the splitting is easily induced by spe-
expanding radiation field grows in time at the rate cific nonconservative terms added to the NLS equation, such
dNper/ dt=12/Aw|const?, which, in fact, is the rate at which as the one accounting for the intrapulse stimulated Raman
the norm flows from the soliton to the radiation waves emit-scattering in optical fiberg3]. The consideration of dynam-
ted under the action of the ac perturbation. ics of the higher-order solitons is also relevant, especially in
Both analytical expressiong9d) and (10) feature the the context of BECs, as the corresponding initial configura-
|Aw|_1/2 factor, that perfectly fits the numerical data summa-tions can be created in the real experiment.
rized in Fig. Xb). Although these results, obtained for the e have studied in detail thesolitons up ton=5. First,
weak time-periodic FR management, seem very simple, theyye consider the case of a very small driving amplitude,
have not been reported before, to the best of our knowledge-0.00005. Figure @) displays oscillations of the amplitude
We also notice that the usual variational approximatidh)  |¢(x=L/2)| of the 2-soliton, which corresponds to the initial
for the NLS solitons, which is efficient in explaining a num- condition(11) with n=2. The frequency of the basic oscilla-
ber of other perturbative effecf22], cannot account for the tions coincides withwy,,, as given by the expressiaii2),
occurrence of the resonance @t ws,, because the VA ne- while the frequency of the zoomed beatings in Figh)Zan
glects radiation effects, while the above consideratiome clearly identified withw-wy,,. The resonant character of
showed that it is exactly the radiation field which is the response of the 2 soliton to the weak NLM is obvious
amenable for the manifestations of the resonance. from Fig. 3c).
The above results were obtained in the linear approxima- Note that the exact solution for thresoliton features not
tion, i.e., for a very small amplitude of the ac drive in Eq.  only the shape-oscillation frequen¢y2), but also an overall
(2). At larger b, the perturbed soliton can either survive or frequency of the phase oscillations, which coincides with the
decay into radiation. In fact, a stability region for the solitonsapove-mentioned frequenay,,=A2/2 for the fundamental
in a similar model with a nonsmall perturbation, which dif- soliton, provided that the initial condition is taken as in Eq.
fers from that in Eq(2) by the form of the periodic modu- (11). In the simulations, we also observed a resonant re-
lation function, which is a piecewise-constant one, ratheisponse aty=ws,, but this resonance was essentially weaker
than harmonic, was drawn in Reffl2] in the context of @  than the one aty=wy,. In particular, this is manifest in the
model for spatial optical solitons in a layered waveguide. Infact that, as well as in the case of the fundamental soliton, the
the cases when a stable soliton established itself in thﬂt to the response around the former resonance is provided
strongly perturbed‘strongly nonlinearly-managedgisystem, by the expressiotw—ws,| 2 cf. Fig. 1(b), while the fit to
its formation from the initial configuratiotb) went through  the resonance ab=w,, demonstrates a more singular de-
emission of radiation and, sometimes, separation of a Smaﬂendence,~|w—wbrl‘l, as seen in Fig.(8). Another qualita-
secondary pulse, while no pronounced resonanee=abs, tive difference between the two resonances is that the one at
was observed. As we do not expect that the replacement Qf=g, . with a larger(but still smal) forcing parameteb,
the piecewise-constant modulation function by the harmonigeads to splitting of the higher-order solitons into fundamen-
one should dramatically alter the stability region, we do notta| ones, as shown below, while, in the case of the resonance
consider this issue here in detail. at w=ws,, the increase ob does not lead to the splitting.

III. RESONANT SPLITTING OF HIGHER-ORDER

SOLITONS B. Splitting of 2- and 3-solitons

Unlike the case of the fundamental soliton, the reaction of
the higher-order ones to larger values of the forcing

As is well known, the unperturbed NLS equation givesparameter was not studied before, therefore we have done it
rise to exact soliton solutions of order, in the form of  here. First, we aim to demonstrate that the 2-soliton readily

A. Response to a very weak ac drive
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FIG. 3. (a) Oscillations of the amplitudgp(x=L/2)|, of the 2-soliton created by the initial conditigtil) with A=1, in the case of
b=0.5X 10"* andw=4.15.(b) Zoom of the previous panel around minimum values of the amplitude, which reveals beatings at the frequency
= wy,. (€) The difference between the maximum and minimum values of the soliton’s amplitude vs the driving frequ&heydashed line
is a fitting curve, 0.0006&—-4]; note the difference of the fitting power, 1, from that, =1/2, in Fig. (b).

splits into two moving fundamental pulses, if the driving whose amplitudes are close t=2.5, A,=1.5, andA;
frequency is close to the resonant vali®). The shape of =0.5. As well as in the case of=2, these values correspond
each moving soliton is very close to that given by the com-+o the constituents of the original 3-solitgwith A=0.5), in
monly known exact solution, which can be obtained by ap-terms of the IST23]. The velocities of the three splinters are
plication of the Galilean boost, with a velocity to the zero- v4,=-0.00146, v,=0.0732, andv;=-0.0148, so that the
velocity fundamental solitois), ratios between them atg/v,~-1/5 andvs/v,~-2.
These results can be summarized in the form of diagrams
dso(X,1) = A sechA(x — vt)] exdivx + (i/2) (A2 - v?)t]. which show the minimumthreshold value of the forcing
(13) amplitudeb, necessary for the splitting, versus the driving
frequencyw. The splitting of the 2- and 3-solitons was reg-

Figure 4 displays the evolution of the wave function istered if it took place in the simulations of E@) that were
for the initial condition(11) with n=2 in the resonant case run up to the time, respectively~=600 or t=2000 (still
(A=1 andw=4), with the driving amplitudéo=0.0005. The longer simulations did not give rise to any essential differ-
latter value is still very small, but larger by a factor of 10 ence in the resuljsAs is seen from Fig. 6, for both 2- and
than in the case shown in Fig. 3. The amplitudes of the twa-solitons these dependences clearly have a resonant shape,
fundamental solitons, observed as a result of the splitting, areith sharp minima at the frequency given by Ef2). It is
close toA;=3 andA,=1 (note that they exactly correspond not quite clear why the forcing amplitude required for the
to the fundamental-soliton constituents of the originalsplitting is very small but finite even exactly at the resonance
2-soliton withA=1, in terms of the inverse scattering trans- point. This may be related to the accuracy of the numerical
form (IST) [23)]). Velocities of the splinters were measured to scheme and/or the finite size of the integration domain. Simi-
be v,=0.00197 and),=0.0066, respectivelywith the ratio  lar observations were also made in simulations of the
v1:v3~1:3). At the end of the simulation ruft=1000, the  n-solitons withn=4 and 5.
secondary solitons are found at the distance, respectively, 4.5
and 13.2 from the central poimt=L/2.

Similar near-resonant splittings were observed for
n-solitons withn>2. In particular, Fig. 5 shows this out- The amplitudes and velocities of the fundamental solitons,
come forn=3, which corresponds to the initial configuration into which the higher-order ones split, can be predicted in an
(12) with n=3, A=0.5, =1, andb=0.0005. This time, the analytical from. As it was already mentioned above, the am-
splitting gives rise to three moving fundamental solitons,plitudes of the secondary solitons coincide with those which

C. Analytical results

3_
1000 7\ FIG. 4. A typical example of
800 A :2'5' the splitting of a 2-solitorjgener-
5] ated by the initial condition(11)
600 e with n=2 andA=1] into an asym-
- 1.57 metric pair of moving fundamen-
400 7 — 14 tal solitons, under the action of the
N\ weak resonant drive, withw=4
200 A= 0.5+ J k and b=0.0005.(a) The evolution
0 of |u(x,t)|. (b) The final configu-
1 T U 1 O T T T 1 H —_
@ 0 10 20 30 40 50 o) 0 10 20 30 40 50 ration att=1000.
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correspond to the constituengsigenvaluep of the corre- 1% ) . o 1o o 12
sponding originah-soliton in terms of the IST. However, the s = Zf {lxd® + 211 = [(| ¢1Dx]? - 6] /2| [} dlx.
velocities of the emerging fundamental solitons cannot be -

forecast this way, as, in terms of the IST, they are zero when (15)
the fundamental solitons are bound into a higher-order one. |, the case of the splitting of the 2-solitgal) with the

Nevertheless, both the amplitudes and velocities of th%mplitudeA, the exact conservation of the no«i3) and ap-
final set of the solitons can be predicted in a different wayproximate conservation of the Hamiltonigfi4) yield the
using the exact and nearly exact conservation laws of{Bq. following relations betweeA and the amplitudes, , of the
Indeed, there are two exact dynamical invariants, Eg8p. emerging fundamental solitor(splintery: 4A=A;+A,, and
and (4), and, in addition to that, the unperturbed NLS equa-28A°~ Aj+A; (the latter relation neglects small kinetic en-
tion has an infinite series of higher-order dynamical invari-€rgy of the emerging solitonsThese two relations immedi-
ants, starting from the Hamiltonian, ately yield Aj=3A and A,=A, which coincides with the

above-mentioned numerical results, as well as with the pre-
dictions based on the set of the 2-soliton’s IST eigenvalues.
Furthermore, the exact momentum conservation yields a re-
1 [+ lation involving the velocities , of the secondary solitons,
H= —f (|pd? - |p|Hdx. (14)  Awi+Aw,=0. With regard to the ratid\;/A,=3, this im-
2)_. plies v /v,=-A,/A;=-1/3. This relation is indeed consis-
tent with the aforementioned numerical results, although the
absolute values of the velocities cannot be predicted this

way.
two next invariants, which do not have a straightforward ~Similarly, in the case of the splitting of the 3-soliton, the
physical interpretation, arg] exact conservation dfl and approximate conservation df

andl; [see Eq(15)] yield the relationgwhich again neglect
small kinetic terms, in view of the smallness of the observed
velocitiey 9A=A+A+A;,  1533=A3+A3+A3,  and
o 3369°~ A3+A5+A3. A solution to this system of algebraic
l,= f (ot 30| P2)dX, equations isA; =5A, A,=3A, A;=A, which are the same val-
2] ues that were found from the direct simulations, and can be
predicted as the IST eigenvalues. The conservatiod aifid
I, gives rise to further relations,Awq+Aws+Azus

=0 and (A3-Adv))+(Aw3-Adv,) +(A3-Advs)=0. If

0.005 T T T 0.003 T T T T T

FIG. 6. The minimum values of

0.004 0.0025 the amplitude of the ac perturbation,
necessary for the splitting of the
o 0.003 0.002 2-so|?ton (@ and Sl-s.oliton (b), as
0.0015 functions of the driving frequency.
0.002 The initial condition is taken in the
0.001 form of Eqg. (11) with, respectively,
0.001 0.0005 n=2 andA=1, orn=3 andA=0.5. In
o . o L . X . . both cases, the sharp minimum ex-
a8 _ 4 _ _ 09 095 1 105 1.1 actly correspond_s to the resonant fre-
(@) w (b) w guency, as predicted by E(L2).

066613-6



RESONANT NONLINEARITY MANAGEMENT FOR... PHYSICAL REVIEW E 70, 066613(2004)

the velocitiesv,, are small, it follows from here that beatings of its amplitude, to the weak ac perturbation is reso-
v1lv, =—(A3-AA% [ (A3-A A9 =-1/5, and vs/v,=—(A3  nant when the driving frequenay is close to the soliton’s
- AA2) [ (A3-AsA%)=-2. These results for the velocities are intrinsic frequency. Fon-solitons(breather with n=2 and
consistent with the numerical situation observed in Fig. 5. 3, the response to an extremely weak drive is also resonant,
if wis close to the breathing frequency. More interestingly, a
slightly stronger drive gives rise to splitting of the 2- and
3-solitons into sets of two or three moving fundamental soli-
In this work, we have addressed a simple model, based ofons, respectively. The dependence of the minimum pertur-
the NLS equation, which describes an attractive Bosebation amplitude, which is necessary for the splitting,@n
Einstein condensat@EC) in a quasi-1D trap, with the non- has a clearly resonant character too. The amplitudes of the
linearity strength subjected to a weak time-period&) splinter solitons, and the ratio of their velocities, can be eas-

modulation(that can be imposed by means of the Feshbachiy predicted on the basis of the exact and approximate con-
resonance techniquerhe same model describes the nonlin-servation laws of the perturbed NLS equation.

earity management in periodically inhomogeneous optical
waveguides.

It was found from direct simulations, and explained by
means of a straightforward perturbative expansion, that the The work of B.A.M. was partially supported by Grant No.
response of a fundamental soliton, in the form of temporaB006/03 from the Israel Science Foundation.

IV. CONCLUSION
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