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We consider effects of a periodic modulation of the nonlinearity coefficient on fundamental and higher-order
solitons in the one-dimensional NLS equation, which is an issue of direct interest to Bose-Einstein condensates
in the context of the Feshbach-resonance control, and fiber-optic telecommunications as concerns periodic
compensation of the nonlinearity. We find from simulations, and explain by means of a straightforward analy-
sis, that the response of a fundamental soliton to the weak perturbation is resonant, if the modulation frequency
v is close to the intrinsic frequency of the soliton. For higher-ordern-solitons withn=2 and 3, the response to
an extremely weak perturbation is also resonant, ifv is close to the corresponding intrinsic frequency. More
importantly, a slightly stronger drive splits the 2- or 3-soliton, respectively, into a set of two or three moving
fundamental solitons. The dependence of the threshold perturbation amplitude, necessary for the splitting, onv

has a resonant character too. Amplitudes and velocities of the emerging fundamental solitons are accurately
predicted, using exact and approximate conservation laws of the perturbed NLS equation.
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I. INTRODUCTION

The nonlinear Schrödinger(NLS) equation is a universal
model of weakly nonlinear dispersive media[1,2]. The exis-
tence and stability of solitons in the one-dimensional(1D)
version of the NLS equation with constant coefficients is a
well-established fact, which has important implications in
various areas of physics. In particular, solitons in fiber-optic
telecommunications[3] and quasi-1D Bose-Einstein conden-
sates(BECs) with attractive interactions between atoms[4],
have drawn a great deal of interest.

A new class of dynamical problems, which also have a
vast potential for physical applications, emerges in the inves-
tigation of soliton dynamics in extended versions of the NLS
equation, in which coefficients are periodic functions of the
evolutional variable. A well-known example is a nonlinear
fiber-optic link subjected todispersion management(DM),
which implies that the dispersion coefficient periodically al-
ternates between positive and negative values. The DM links
support a family of stable temporal solitons(see, e.g., Refs.
[5], and also Ref.[6]). Somewhat similar is awaveguide-
antiwaveguidesystem, which can be realized in the spatial
domain(planar optical waveguides). In the latter case, a light
beam is transmitted through a periodic concatenation of non-
linear waveguiding and antiwaveguiding segments[7]. A
common feature of the latter system with the DM is that the
coefficient which periodically jumps between positive and
negative values also belongs to the linear part of the equa-
tion.

Another technique that may be useful for optical telecom-
munications is nonlinearity management(NLM ), which
assumes that the coefficient in front of the nonlinear term
periodically changes its sign. An advantage offered by the
NLM is a possibility to compensate the nonlinear phase shift
accumulating in pulses due to the Kerr nonlinearity of the
optical fiber[8]. In practical terms, the NLM can be imple-

mented by dint of elements with a strong quadraticsxs2dd
nonlinearity, which are periodically inserted into the fiber
link. The xs2d elements can emulate a negative Kerr effect
through the cascading mechanism[9]. Various other schemes
of NLM in fiber-optic links were considered, including its
combination with the DM, amplifiers, etc.[10]. A related
scheme makes use of the NLM in soliton-generating lasers
based on fiber rings[11]. The NLM for spatial solitons,
which assumes alternation of self-focusing and self-
defocusing nonlinear layers in planar[12] or bulk [13]
waveguides, was introduced too.

All these systems may be regarded as examples of peri-
odically inhomogeneous optical waveguiding media. Other
examples belonging to the same general class aretandem
waveguides(see Ref.[14] and references therein) and the
split-step model[15]. These are built as a juxtaposition of
linear segments alternating with ones featuring, respectively,
quadratic or cubic nonlinearity. A common feature of the
models of all these types is that they supportrobustsolitons,
despite a “naive” expectation that solitons would quickly de-
cay, periodically hitting interfaces between strongly different
elements of which the system is composed.

The above-mentioned optical media are described by the
NLS equation, in which the role of the evolutional variable
belongs to the propagation distance, while the remaining free
variable is either the local time(for temporal solitons), or the
transverse coordinate(s), in the spatial-domain models.
Mathematically similar, but physically altogether different,
models describe BECs in the 1D geometry. In that case, the
corresponding NLS equation is usually called the Gross-
Pitaevskii (GP) equation. It governs the evolution of the
mean-field wave functionf in time std, the other variable,x,
being the coordinate along the quasi-1D trap. In the normal-
ized form, the GP equation is
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ift = − 1
2fxx + Usxdf + gufu2f, s1d

whereUsxd is the potential which confines the condensate,
and the nonlinearity coefficientg is proportional to the scat-
tering length of collisions between atoms. Two natural pos-
sibilities to introduce a time-periodic(ac) “management” in
the BEC context are either through a periodic modulation of
the confining potential, most typically in the form of
Usx,td= 1

2fk0+k1cossvtdgx2, or by means of time modulation
of the scattering length, using the Feshbach resonance(FR)
[16]. In the latter case, the nonlinearity coefficient in Eq.(1)
takes the form ofgstd=g0+g1sinsvtd. In either case, the
modulation is generated by a combination of dc and ac mag-
netic fields applied to the BEC.

The GP equation with the periodically modulated strength
of the trapping potential was considered for bothg.0 (when
solitons do not exist, and the BEC as a whole is subjected to
the “management,” including the 2D and 3D cases) [17], and
g,0, when the soliton is the basic dynamical object[18]. In
particular, a parametric resonance is possible in the former
case, and creation of an effectively trapping potential, while
the underlying one is antitrapping, havingk0,0, by the
high-frequency ac part of the potential(with large v) was
predicted in the latter case.

The periodic modulation of the nonlinearity coefficient
through the “ac FR management” is an especially interesting
possibility, as the FR is a highly efficient experimental tool,
broadly used for the study of various dynamical properties of
the BECs[16]. In particular, it has been predicted that the
modulation through the ac FR makes it possible to preclude
collapse and generate stable solitonlike structures in 2D(but
not 3D) condensates[19]; in fact, this prediction is similar to
the earlier considered possibility of the stabilization of 2D
spatial optical solitons in a bulk waveguide subjected to the
periodic NLM [13]. In the 1D model of the GP type, sub-
jected to the NLM, various stable dynamical states, including
Gaussian-shaped soliton-like objects, and ones of the
Thomas-Fermi type, were studied in detail[20]. In addition,
analysis based on averaged equations was developed, for this
case, in Ref.[21] (similar to the analysis elaborated in Ref.
[18] for the case of the periodic modulation of the trapping
potential).

The objective of this work is to studyresonance effects
produced by the ac FR management, i.e., harmonic modula-
tion of the nonlinearity coefficient, in the dynamics of fun-
damental and higher-order 1D solitons in the NLS equation.
We will focus on the case when the ac part of the nonlinear
coefficient is small in comparison with its constant(dc) part
g0, which accounts for the self-attraction in the BEC, and is
normalized to beg0=−1. We also assume that the soliton’s
width is much smaller than the effective size of the trap,
hence the external potential may be dropped. The consider-
ation of the GP equation without the trapping potential
makes it possible to identify fundamental dynamical effects
for the solitons induced by the ac FR management. In this
connection, it is necessary to mention that, in the 1D case,
the trapping potential is not a crucial factor, on the contrary
to the 2D and 3D cases, where the external potential plays a

much more important role, in view of the intrinsic instability
of the multidimensional NLS solitons.

Thus, we will be dealing with the normalized NLS equa-
tion in the form[cf. Eq. (1)]

ift + 1
2fxx + f1 + b sinsvtdg ufu2f = 0, s2d

where the amplitudeb of the ac drive is small. Note that Eq.
(2) conserves exactly two dynamical invariants: the norm,
which is proportional to the number of atoms in the BEC,

N =E
−`

+`

ufsxdu2dx, s3d

and the momentum,

P = iE
−`

+`

sffx
* − f*fxddx. s4d

We will demonstrate that the weak ac perturbation in Eq.
(2) can generate strong effects, if the driving frequencyv is
close to specific resonant values. These effects include intrin-
sic vibrations of the fundamental soliton and splitting of the
higher-order ones. We will also propose analytical explana-
tions to these effects. To the best of our knowledge, these
results have not been reported before for the present simple
model.

The rest of the paper is organized in the following way.
The resonant effect of the periodic NLM on the fundamental
soliton is reported in Sec. II, and the resonant splitting of
n-solitons withn=2 and 3 is investigated in Sec. III. Sec IV
concludes the paper.

II. RESONANT RESPONSE OF THE FUNDAMENTAL
SOLITON

A. Numerical results

First, we consider the action of the ac perturbation in Eq.
(2) on the fundamental soliton, which, in the caseb=0, is

fsolsx,td = A sechfAsx − x0dg expsiA2t/2d, s5d

whereA is an arbitrary amplitude. Numerical simulations of
Eq. (2) were performed in a sufficiently large domain, 0
,x,L, the initial condition corresponding to the soliton(5)
placed at the center of the domain,x0=L /2. We have per-
formed numerical simulations using the split-step Fourier
method with 1024 Fourier modes. The system size isL=50,
and the time step for the numerical simulation isDt=0.001.

Figure 1(a) displays a typical example of the time evolu-
tion of the soliton’s amplitudeufsx=L /2du, under the action
of the ac perturbation with a very small amplitude,b
=0.0001. The frequency of the beatings observed in this fig-
ure can be clearly identified asv−vsol, wherevsol;A2/2 is
the intrinsic frequency of the unperturbed soliton(5). We
have checked that the beating frequency is independent of
the system’s size and the other details of the numerical
scheme.

The main resonant effect for the fundamental soliton is
displayed in Fig. 1(b), in the form of the difference between
the maximum and minimum(in time) values of its amplitude
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versus the driving frequencyv. The resonance atv=vsol
=2 (for A=2) is obvious. The simulations do not reveal any
noticeable subharmonic or higher-order resonance at fre-
quenciesv=1, 3 or 4. Due to the scaling invariance of Eq.
(2), the plot shown in Fig. 1(b) does not pertain solely to the
particular value of the soliton’s amplitude,A=2, but is actu-
ally a universal one. It is easy to verify that the ranges of the
variablest andx, which are shown in this and other figures,
correspond, in the normalized units, to experimentally real-
istic configurations of the BECs in the quasi-1D geometry.

B. Perturbative analysis

In order to explain the resonance shown above, we look
for a perturbed fundamental solution asfsx,td=fsolsx,td
+fpertsx,td, where the first term is the solution(5). Thus, we
arrive at the driven linearized equation for the perturbation,

isfpertdt + 1
2sfpertdxx + A2sech2sAxds2fpert+ eiA2tfpert

* d

=
i

2
bA3sech3sAxdfeifsA2/2d+vgt − eifsA2/2d−vgtg . s6d

The source of the resonant response is in the fact that the
second term on the right-hand side of Eq.(6) becomes time-
independent exactly at the resonance point,v=vsol;A2/2.
Figure 2 displays the evolution of the perturbation close to
the resonance atv=1.98, as found from direct numerical
integration of the linearized equation(6), with the initial con-
dition fpertsxd=0. As can be seen from the figure, the pertur-
bation grows in time at the center, and simultaneously ex-
pands in space. Strictly speaking, the latter feature remains
valid as long as the size of the region occupied by the ex-
panding wave fields remains essentially smaller than the
limit imposed by the confining field.

The linearized equation(6) is too difficult for an exact
analytical solution. However, the observation that the char-
acteristic spatial scale of the solution observed in Fig. 2 be-
comes much larger than the internal scale of the function
sech(Ax) suggests that principal features of the solution can
be understood from a simpler equation, in which the term
,sech2sAxd on the left-hand side of Eq.(6) is neglected, and

the source corresponding to the second term on the right-
hand side is approximated by ad-function:

isf̃pertdt + 1
2sf̃pertdxx = const3 dsxde−iDvt,

const =
ip

4
bA2, s7d

where Dv;v−vsol, and const;sib /2dA3e−`
+`sech3sAxddx.

Equation(7) can be solved by means of the Fourier trans-
form. After straightforward manipulations, this yields

f̃pertsx,td = −
const

2Îp
s1 + ide−iDvtE

0

t dt8
Ît8

expS ix2

2t8
+ iDvt8D .

s8d

Further consideration shows that, forDv,0, the asymptotic
form of the solution(8) at t→` amounts to an exponentially
localized stationary expression, which, by itself, is an exact
solution to Eq.(7):

FIG. 1. (a) A typical example of beatings in the evolution of the fundamental-soliton’s amplitude under the action of a very weak
perturbation in Eq.(2), with b=10−4 and v=2.2. The amplitude of the initial unperturbed soliton isA=2 (the corresponding soliton’s
frequency isvsol;A2/2=2). (b) The difference between the maximum and minimum values of the soliton’s amplitude vs the perturbation
frequency. The dashed line is a fitting curve, 0.0003uv−2u−1/2.

FIG. 2. Direct numerical solution of the linearized equation(6)
for the perturbation around the fundamental soliton, in the near-
resonance case, withv=1.98.
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f̃pertsx,td =
const

Î2uDvu
expsi uDvut − Î2uDvuuxud . s9d

In the case ofDv.0, the asymptotic form of the general
solution (8) corresponds to a symmetric region occupied by
plane waves emitted by the central source at wave numbers
k= ±Î2Dv . The region expands in time with the group
velocitiesvgr=k= ±Î2Dv, so that the asymptotic form of the
solution is

f̃pertsx,td < − i
const
Î2Dv

3 Hexps− iDvt + iÎ2Dvuxud , if uxu , Î2Dvt,

0, if uxu . Î2Dvt.

s10d

This asymptotic solution implies that the norm(3) of the
expanding radiation field grows in time at the rate
dNpert/dt=Î2/Dv uconstu2, which, in fact, is the rate at which
the norm flows from the soliton to the radiation waves emit-
ted under the action of the ac perturbation.

Both analytical expressions(9) and (10) feature the
uDvu−1/2 factor, that perfectly fits the numerical data summa-
rized in Fig. 1(b). Although these results, obtained for the
weak time-periodic FR management, seem very simple, they
have not been reported before, to the best of our knowledge.
We also notice that the usual variational approximation(VA )
for the NLS solitons, which is efficient in explaining a num-
ber of other perturbative effects[22], cannot account for the
occurrence of the resonance atv=vsol, because the VA ne-
glects radiation effects, while the above consideration
showed that it is exactly the radiation field which is
amenable for the manifestations of the resonance.

The above results were obtained in the linear approxima-
tion, i.e., for a very small amplitudeb of the ac drive in Eq.
(2). At larger b, the perturbed soliton can either survive or
decay into radiation. In fact, a stability region for the solitons
in a similar model with a nonsmall perturbation, which dif-
fers from that in Eq.(2) by the form of the periodic modu-
lation function, which is a piecewise-constant one, rather
than harmonic, was drawn in Ref.[12] in the context of a
model for spatial optical solitons in a layered waveguide. In
the cases when a stable soliton established itself in the
strongly perturbed(“strongly nonlinearly-managed”) system,
its formation from the initial configuration(5) went through
emission of radiation and, sometimes, separation of a small
secondary pulse, while no pronounced resonance atv=vsol
was observed. As we do not expect that the replacement of
the piecewise-constant modulation function by the harmonic
one should dramatically alter the stability region, we do not
consider this issue here in detail.

III. RESONANT SPLITTING OF HIGHER-ORDER
SOLITONS

A. Response to a very weak ac drive

As is well known, the unperturbed NLS equation gives
rise to exact soliton solutions of ordern, in the form of

periodically oscillating breathers, which start from the initial
conditions

f0sxd = nAsechfAsx−L/2dg s11d

with an integern.1 [23] [the expression(11) assumes that
the initial configuration is placed at the center of the integra-
tion domain]. The frequency of the shape oscillations
(breathings) of the higher-order soliton is

vbr = 4A2, s12d

irrespective of the value ofn.
Generally speaking, the higher-order solitons are unstable

bound complexes of fundamental solitons, as, in the absence
of perturbations, their binding energy is exactly zero, which
is a known consequence of the exact integrability of the un-
perturbed NLS equation. Nevertheless, not any perturbation
readily splits the higher-order soliton into its fundamental
constituents; usually, the splitting is easily induced by spe-
cific nonconservative terms added to the NLS equation, such
as the one accounting for the intrapulse stimulated Raman
scattering in optical fibers[3]. The consideration of dynam-
ics of the higher-order solitons is also relevant, especially in
the context of BECs, as the corresponding initial configura-
tions can be created in the real experiment.

We have studied in detail then-solitons up ton=5. First,
we consider the case of a very small driving amplitude,b
=0.00005. Figure 3(a) displays oscillations of the amplitude
ufsx=L /2du of the 2-soliton, which corresponds to the initial
condition(11) with n=2. The frequency of the basic oscilla-
tions coincides withvbr, as given by the expression(12),
while the frequency of the zoomed beatings in Fig. 3(b) can
be clearly identified withv-vbr. The resonant character of
the response of the 2 soliton to the weak NLM is obvious
from Fig. 3(c).

Note that the exact solution for then-soliton features not
only the shape-oscillation frequency(12), but also an overall
frequency of the phase oscillations, which coincides with the
above-mentioned frequencyvsol=A2/2 for the fundamental
soliton, provided that the initial condition is taken as in Eq.
(11). In the simulations, we also observed a resonant re-
sponse atv=vsol, but this resonance was essentially weaker
than the one atv=vbr. In particular, this is manifest in the
fact that, as well as in the case of the fundamental soliton, the
fit to the response around the former resonance is provided
by the expressionuv−vsolu−1/2, cf. Fig. 1(b), while the fit to
the resonance atv=vsol demonstrates a more singular de-
pendence,,uv−vbru−1, as seen in Fig. 3(c). Another qualita-
tive difference between the two resonances is that the one at
v=vbr, with a larger(but still small) forcing parameterb,
leads to splitting of the higher-order solitons into fundamen-
tal ones, as shown below, while, in the case of the resonance
at v=vsol, the increase ofb does not lead to the splitting.

B. Splitting of 2- and 3-solitons

Unlike the case of the fundamental soliton, the reaction of
the higher-order ones to larger values of the forcing
parameter was not studied before, therefore we have done it
here. First, we aim to demonstrate that the 2-soliton readily
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splits into two moving fundamental pulses, if the driving
frequency is close to the resonant value(12). The shape of
each moving soliton is very close to that given by the com-
monly known exact solution, which can be obtained by ap-
plication of the Galilean boost, with a velocityv, to the zero-
velocity fundamental soliton(5),

fsolsx,td = A sechfAsx − vtdg expfivx + si/2dsA2 − v2dtg.

s13d

Figure 4 displays the evolution of the wave function
for the initial condition(11) with n=2 in the resonant case
(A=1 andv=4), with the driving amplitudeb=0.0005. The
latter value is still very small, but larger by a factor of 10
than in the case shown in Fig. 3. The amplitudes of the two
fundamental solitons, observed as a result of the splitting, are
close toA1=3 andA2=1 (note that they exactly correspond
to the fundamental-soliton constituents of the original
2-soliton withA=1, in terms of the inverse scattering trans-
form (IST) [23]). Velocities of the splinters were measured to
be v1=0.00197 andv2=0.0066, respectively(with the ratio
v1:v3<1:3). At the end of the simulation runst=1000d, the
secondary solitons are found at the distance, respectively, 4.5
and 13.2 from the central point,x=L /2.

Similar near-resonant splittings were observed for
n-solitons with n.2. In particular, Fig. 5 shows this out-
come forn=3, which corresponds to the initial configuration
(11) with n=3, A=0.5, v=1, andb=0.0005. This time, the
splitting gives rise to three moving fundamental solitons,

whose amplitudes are close toA1=2.5, A2=1.5, and A3
=0.5. As well as in the case ofn=2, these values correspond
to the constituents of the original 3-soliton(with A=0.5), in
terms of the IST[23]. The velocities of the three splinters are
v1=−0.00146, v2=0.0732, andv3=−0.0148, so that the
ratios between them arev1/v2<−1/5 andv3/v2<−2.

These results can be summarized in the form of diagrams
which show the minimum(threshold) value of the forcing
amplitudeb, necessary for the splitting, versus the driving
frequencyv. The splitting of the 2- and 3-solitons was reg-
istered if it took place in the simulations of Eq.(2) that were
run up to the time, respectively,t=600 or t=2000 (still
longer simulations did not give rise to any essential differ-
ence in the results). As is seen from Fig. 6, for both 2- and
3-solitons these dependences clearly have a resonant shape,
with sharp minima at the frequency given by Eq.(12). It is
not quite clear why the forcing amplitude required for the
splitting is very small but finite even exactly at the resonance
point. This may be related to the accuracy of the numerical
scheme and/or the finite size of the integration domain. Simi-
lar observations were also made in simulations of the
n-solitons withn=4 and 5.

C. Analytical results

The amplitudes and velocities of the fundamental solitons,
into which the higher-order ones split, can be predicted in an
analytical from. As it was already mentioned above, the am-
plitudes of the secondary solitons coincide with those which

FIG. 4. A typical example of
the splitting of a 2-soliton[gener-
ated by the initial condition(11)
with n=2 andA=1] into an asym-
metric pair of moving fundamen-
tal solitons, under the action of the
weak resonant drive, withv=4
and b=0.0005.(a) The evolution
of uusx,tdu. (b) The final configu-
ration att=1000.

FIG. 3. (a) Oscillations of the amplitude,ufsx=L /2du, of the 2-soliton created by the initial condition(11) with A=1, in the case of
b=0.5310−4 andv=4.15.(b) Zoom of the previous panel around minimum values of the amplitude, which reveals beatings at the frequency
v−vbr. (c) The difference between the maximum and minimum values of the soliton’s amplitude vs the driving frequencyv. The dashed line
is a fitting curve, 0.0006/uv−4u; note the difference of the fitting power,21, from that, −1/2, in Fig. 1(b).
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correspond to the constituents(eigenvalues) of the corre-
sponding originaln-soliton in terms of the IST. However, the
velocities of the emerging fundamental solitons cannot be
forecast this way, as, in terms of the IST, they are zero when
the fundamental solitons are bound into a higher-order one.

Nevertheless, both the amplitudes and velocities of the
final set of the solitons can be predicted in a different way,
using the exact and nearly exact conservation laws of Eq.(2).
Indeed, there are two exact dynamical invariants, Eqs.(3)
and (4), and, in addition to that, the unperturbed NLS equa-
tion has an infinite series of higher-order dynamical invari-
ants, starting from the Hamiltonian,

H =
1

2
E

−`

+`

sufxu2 − ufu4ddx. s14d

two next invariants, which do not have a straightforward
physical interpretation, are[2]

I4 =
1

2
E

−`

+`

sffxxx
* + 3ffx

* ufu2ddx,

I5 =
1

4
E

−`

+`

hufxxu2 + 2ufu6 − fsufu2dxg2 − 6ufxu2ufu2jdx.

s15d

In the case of the splitting of the 2-soliton(11) with the
amplitudeA, the exact conservation of the norm(3) and ap-
proximate conservation of the Hamiltonian(14) yield the
following relations betweenA and the amplitudesA1,2 of the
emerging fundamental solitons(splinters): 4A=A1+A2, and
28A3<A1

3+A2
3 (the latter relation neglects small kinetic en-

ergy of the emerging solitons). These two relations immedi-
ately yield A1=3A and A2=A, which coincides with the
above-mentioned numerical results, as well as with the pre-
dictions based on the set of the 2-soliton’s IST eigenvalues.
Furthermore, the exact momentum conservation yields a re-
lation involving the velocitiesv1,2 of the secondary solitons,
A1v1+A2v2=0. With regard to the ratioA1/A2=3, this im-
plies v1/v2=−A2/A1=−1/3. This relation is indeed consis-
tent with the aforementioned numerical results, although the
absolute values of the velocities cannot be predicted this
way.

Similarly, in the case of the splitting of the 3-soliton, the
exact conservation ofN and approximate conservation ofH
andI5 [see Eq.(15)] yield the relations(which again neglect
small kinetic terms, in view of the smallness of the observed
velocities) 9A=A1+A2+A3, 153A3<A1

3+A2
3+A3

3, and
3369A5<A1

5+A2
5+A3

5. A solution to this system of algebraic
equations isA1=5A, A2=3A, A3=A, which are the same val-
ues that were found from the direct simulations, and can be
predicted as the IST eigenvalues. The conservation ofP and
I4 gives rise to further relations,A1v1+A2v2+A3v3

=0 and sA1v1
3−A1

3v1d+sA2v2
3−A2

3v2d+sA3v3
3−A3

3v3d=0. If

FIG. 5. The same as in Fig. 4
for the 3-soliton, generated by the
initial configuration (11) with
n=3 andA=0.5. In this case, the
forcing frequency and amplitude
arev=1 andb=0.0005.

FIG. 6. The minimum values of
the amplitude of the ac perturbation,
necessary for the splitting of the
2-soliton (a) and 3-soliton (b), as
functions of the driving frequency.
The initial condition is taken in the
form of Eq. (11) with, respectively,
n=2 andA=1, orn=3 andA=0.5. In
both cases, the sharp minimum ex-
actly corresponds to the resonant fre-
quency, as predicted by Eq.(12).
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the velocities v1,2 are small, it follows from here that
v1/v2 =−sA2

3−A2A3
2d / sA1

3−A1A3
2d=−1/5, and v3/v2=−sA2

3

−A2A1
2d / sA3

3−A3A1
2d=−2. These results for the velocities are

consistent with the numerical situation observed in Fig. 5.

IV. CONCLUSION

In this work, we have addressed a simple model, based on
the NLS equation, which describes an attractive Bose-
Einstein condensate(BEC) in a quasi-1D trap, with the non-
linearity strength subjected to a weak time-periodic(ac)
modulation(that can be imposed by means of the Feshbach-
resonance technique). The same model describes the nonlin-
earity management in periodically inhomogeneous optical
waveguides.

It was found from direct simulations, and explained by
means of a straightforward perturbative expansion, that the
response of a fundamental soliton, in the form of temporal

beatings of its amplitude, to the weak ac perturbation is reso-
nant when the driving frequencyv is close to the soliton’s
intrinsic frequency. Forn-solitons(breathers), with n=2 and
3, the response to an extremely weak drive is also resonant,
if v is close to the breathing frequency. More interestingly, a
slightly stronger drive gives rise to splitting of the 2- and
3-solitons into sets of two or three moving fundamental soli-
tons, respectively. The dependence of the minimum pertur-
bation amplitude, which is necessary for the splitting, onv
has a clearly resonant character too. The amplitudes of the
splinter solitons, and the ratio of their velocities, can be eas-
ily predicted on the basis of the exact and approximate con-
servation laws of the perturbed NLS equation.
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